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ABSTRACT 

A theoretical  study of finite  amplitude  waves in an  approximately 

spherical  liquid  drop  subject  to  surface  tension  forces  is  presented. 

Equations  inferred  from  hydrodynamic  theory  provide  the  starting  point 

for the  analysis.  It  is  shown  that  the  equations of motion  for  the  liquid 

drop  can  be  expressed  in  canonical  form  based  on  a  certain  postulated 

Hamiltonian.  It  is  also  shown  that  energy  is  a  constant of the  motion  in 

this  exact  theory,  but  not  in  low  order  perturbation  theory of an  almost 

spherical  drop.  Exact  expressions  are  expanded to obtain  zeroth,  first,  and 

second  order  equations  in  perturbation  theory.  The  zeroth  order  theory 

gives the Young-Laplace  formula  for  a  spherical  drop.  The  first  order 

equations  are  solved and the  solutions  are  in  agreement  with  Rayleigh’s 

results  for  capillary  waves  with  small  amplitude.  The  second  order 

equations  take  into  account  finite  amplitudes  and  they  contain  the 

leading  order  nonlinear  interactions  among  capillary  waves.  The 

complete,  exact  solutions of those  equations  for the velocity  potential  and 

surface  displacement  developed  here  are new and are  a  principal  focus of 

this  study. It is  shown  with  the  aid of these  solutions  that  evolution of 

waves  in  time  under  resonance  conditions  can  be  produced  to  good 

approximation  under  near-resonance  conditions  provided  that  the 

interval  of  observation  is  suitably  restricted.  Further,  it  is  shown  that 

under  near-resonance  conditions  there will be two or  more  frequencies of 

oscillation  in  any  spatial  state.  These  properties of the new formulas 

suggest a physical  mechanism  responsible  for  intermittency in  a  turbulent 

fluid. In the  case of capillary  ripple  turbulence that mechanism  involves a 
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certain  kind  of  three-wave  mixing.  Experimental  and  theoretical 

implications of this  work  are  discussed.  On  the  theoretical  side,  the 

variational  method  used in establishing  the  canonical  form of the 

equations of motion  is  explained  in  detail  and  compared  and  contrasted 

with  a  variational  method  used by others.  Further,  the  importance of 

near-resonance  terms  in  making  a  transition  from  a  discrete  to  a 

continuous  wave  spectrum  is  discussed.  Also,  problems  due  to  possible 

L=l  tesseral  harmonic  contributions  to  the  second  order  perturbation 

formulas  are  identified. A planned NASA space  flight  experiment  to  study 

capillary  ripple  turbulence  in  an  isolated  liquid  drop  provided  the 

principal  motivation  and  direction  for  this  research,  and  the  new 

theoretical  results  will  be  available  to  aid  in  the  analysis  of  observations 

made  there.  Results  obtained  here  also  provide  new  perspective  for 

certain  problems  in  ocean  dynamics  and  plasma  turbulence  that  involve 

high  amplitude  waves  and  nonlinear  interactions.  Finally,  this  research 

suggests  experiments  that  could  be  performed to detect  non-linear 

interactions  among  collective  excitations  in an atomic  nucleus. 
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I.  INTRODUCTION 

Finite  amplitude  capillary  waves in  an almost  spherical  liquid  drop 

are  studied  theoretically  in  this  paper.  Such  waves  provide  an  opportunity 

to  investigate  nonlinear  interactions  and  their  consequences  in a 

relatively  simple  theory  that  can  be  subjected  to  controlled  experimental 

tests  under  nearly  ideal  conditions. A highlight of current  interest  in  this 

area  is a planned NASA space  flight  experiment 1-3 to investigate  capillary 

ripple  turbulence  in  isolated  drops. 

Viewed  in the general  context  of  high  amplitude  waves  and 

nonlinear  interactions,  this  analysis  bears  on  theories of such  diverse 

phenomena  as  ocean  dynamic^,^‘^ plasma t ~ r b u l e n c e ~ ' ~  confinement of 

9 plasmas  in  controlled  fusion,  and  low  energy  nuclear  physics.' A 

number of specific  implications  and  features of the new  results  will be 

discussed.  For  example,  recent  observations of intermittency  in  ripple 3 

wave  turbulence  have  demonstrated  that  some  degree of coherence  still 

exists  in  turbulent  systems.  Other  research  has  focused  attention  on  the 

phenomenon of intermittency  in  fluid  turbulence  in a more  general 

context,  and  the  need  for  new  approaches to understand  it  has  been 

recognized.' ' A physical  mechanism  responsible  for  intermittent  ordered 

structures in  turbulence is suggested by the analysis  presented  here. 

The  theory  is  formulated in  spherical  coordinates  and  variables  that 

are  appropriate  for the geometry of almost  spherical  drops.  The  starting 
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point  is a set of exact  expressions  for  equations of motion of a perturbed 

liquid,  boundary  conditions,  and  initial  conditions  that  was  deduced 

initially  from  the  hydrodynamic  theory of an incompressible,  inviscid 

liquid  without  vorticity,  but with a moving  surface  subjected  to  forces 

associated  with  surface  tension. An exact  Hamiltonian  is  subsequently 

postulated  and  it  is  demonstrated with the  aid  of a variational  method 

that  the  exact  equations  of  motion  can be expressed  as  Hamilton's 

canonical  equations.  It  is  then  shown  that  in  this  exact  theory,  energy  is a 

constant of the  motion. 

Perturbation  equations  and  formulas  are  then  derived  thru 

expansions of exact  expressions.  The  zeroth  and  first  order  versions of 

perturbation  theory  include  known  results'  contained,  in  the  Young- 

Laplace  formula  for  the  pressure  difference  across  the  surface of a 

spherical  drop,  and  in  Rayleigh's  linear  theory of capillary  waves  in an 

almost  spherical  drop,  respectively.  Substitution of solutions of the  linear 

equations of motion  into  the  second  order Hamlltonlan reveals  that  in  this 

level of approximation  in  spherical  geometry,  energy  is  not a constant of 

the  motion.  This  result  may  be  expected to lead  to  special  problems  in 

power  spectrum  characterization of ripple  turbulence  on a spherical 

surface,  such  as  in  the  planned  NASA  space  flight  experiment.  Similar 

problems  do  not  occur  in  treating  waves on almost  flat  surfaces. 

The  second  order W n s  of m o h  contain  the  leading  order 

nonlinear  interactions  among  capillary  waves. A principal  focus of this 

paper  is  development  of  an  exact  solution of these  second  order 

equations.  Both  the  phases and amplitudes of oscillating  variables  appear 

i n  the solution.  Ensemble  averages of the primary  variables  and  related 
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correlation  functions  could  readily be calculated, i f  desired, i n  

straightforward  extensions of this  work. 

The  dispersion  curve for capillary waves  bends  upward in  the linear 

theory in spherical  geometry,  just  as i n  flat  geometry.  The  upward 

bending  implies  that  decay  and  coalescence  processes  can  contribute  to 

the  second  order  equations of motion.  This  is an important  simplifying 

feature  in  the  analysis of time  dependence  in  surface  waves of the 

capillary  type,  as  contrasted  with  gravitational  waves  in  flat  geometry.  In 

the  case of gravitational  waves,  decay  does  not  occur  in  second  order,  but 

important  time  dependence  associated  with  wave  scattering,  decay  and 

coalescence  occurs  in  third  order  perturbation  theory.  Third  order 

perturbation  theory  is  significantly  more  complex  than  second  order 

theory. 

The  frequency  spectrum  for  waves  in  the  linear  theory  is  discrete, 

and  this  discreteness  is  reflected  in  solutions  of  the  second  order 

equations of motion. A noteworthy  feature of the  exact  solution of the 

second  order  equations is that  the  linear  time  growth  of  dynamic 

variables  that  occurs  in  the  rare  case of exact  resonance  can  be  produced 

to good  approximation  using  Taylor's  series  expansions of near-resonance 

exact  formulas,  provided  that the time  interval of applicability  is  suitably 

restricted.  The  near-resonance  condition  occurs  much  more  commonly 

than  exact  resonance, and  the exact  formulas,  without  expansion,  contain 

important  information  for  longer  time  intervals.  Another  important  result 

of  second order theory is that  oscillations with multiple  frequencies  occur 

in any  given  spatial  state. 

Problems wi th  making a proper  transition  from a discrete to a 

continuous  wave  spectrum  in  treating  resonance  and  near-resonance 
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conditions i n  nonlinear  theories  have been discussed by others. I3 ,14  

Some  difficult  issues  were  encountered in  treating  near-resonance  terms 

as  well  as  other  off-resonance  terms  as  Cauchy  principal  values in 

integrals  involving  frequency  differences. In some  instances  the  principal 

value  terms  were  neglected  because  they  involve  simple  oscillatory 

behavior  and  were  regarded  as  unimportant  in  understanding  random 

distributions of  weakly  interacting  waves.  The  results  for  time  dependence 

in  the  present  theory  where  the  wave  spectrum  is  definitely  discrete  bears 

on  these  issues  and  may  aid  in  clarifying them. 

Mathematical  details  and  physical  implications of the  exact  theory 

of capillary  waves  in a liquid  drop  are  treated  first  in  the  following 

sections  of  this  paper.  Then  the  second  order  theory t,hat includes  the 

leading  nonlinear  interactions  is  developed  in  detail. 

The  discussion  in  the  final  section of this  paper  includes  comments 

on the canonical  formalism  for a hydrodynamic  system  with a moving 

boundary.  Methods used in  this  paper  are  compared  and  contrasted  with 

1 5  earlier  work  of  others.  The  possibility of L=l spherical  harmonic 

contributions  in  the  theory  and  problems  associated  with  this  are 

discussed.  The  physical  mechanism  responsible  for  intermittency 

suggested  by  the  new  results  is  explained.  The  relevance of the  new 

theory to turbulence,  like  that in a stormy  sea, on the surface of an atomic 

nucleus,  and  possibilities  for  observing  footprints of this  phenomenon in 

1 6  y-ray spectra  are  discussed.  Finally,  experimental  results  for  large 

amplitude  oscillations in  levitated  electrically  charged  liquid  drops  are 
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cited i n  support of the  predictions  for  behavior of a  perturbed  atomic 

nucleus. 

II. DESCRIPTION OF MODEL AND FORMULATION OF AN EXACT 

THEORY 

In  the  model  for  capillary  waves  in  an  isolated  liquid  drop 

considered  here, it  is assumed  that  no  net  external  force  acts  on  the  drop 

and  that  the  center of  mass is  stationary in  an inertial  reference  frame. 

The  surface of the  perturbed  drop  is  at  r=r(e,cp;t),  where 8 and cp are 

spherical  coordinates  referred  to an origin  at  the  center of mass,  and  t  is 

time. If q(8,cp;t) is the  radial displacement of the  perturbed  liquid  surface 

from  the  unperturbed  surface  having  radius '0, then 

In  this  analysis  the  liquid  is  regarded  as  incompressible  and  inviscid.  Its 

density is p .  It is assumed  that  only  potential  flow occurs,  and  at  any  point 

inside  the  drop  or  on  its boundary  the  velocity v" is given  by 

G( r, e, cp; t )  = V@( T ,  e, cp; t )  . 

The  following  notation  is used in what follows: 

h( 899; 4 
at 

= i l ,  
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Hydrodynamic  theory  then  provides  a  system  of  equations  that 

determines Q, and q ,  as indicated  below. 

Continuity  equation: 

v2<f, = o for 0 I r I ro +q(e,cp;t). 

Kinematic  boundary  condition  at  the  center of the drop: 

a@ 
" 

ar 
-0  at r = O .  

Kinematic  boundary  condition  at  the  free  surface: 

where f is  a  unit vector in  the  radial  direction. 

Initial  values of  the free  surface  coordinate: 

Initial  values of the  free  surface  velocity: 
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where 2 is the unit  normal to the free  surface. 

Cauchy's  integral  for  fluid  motion: 

A  formula  for  the  pressure  p  at  any  point  just  inside  the  free  surface  is 

derived  in  Appendix A. When  that  formula  and Eq. (2) are  inserted  in Eq. 

(9a),  one  obtains  the  following  result. 

Dynamical  boundary  condition  at  the  free  surface: 

= 0 at r = '0 +q(e,q; t ) .  

Equations  (1)-(9b)  provide  a  complete  set of relations  for  an  exact 

mathematical  description of the model  system. 

Certain  important  properties of the  exact  solutions  of  these 

equations  and  results  that  are  useful  for  perturbation  theory  can  be 

exhibited by identifying  the  Hamiltonian and expressing  Eqs. ( 6 )  and  (9b) 

in Hamilton's  canonical  form.  These basic expressions  are  treated  next,  in 

Sec.111. 
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111. THE HAMILTONIAN AND HAMILTON'S  EQUATIONS 

A. The Hamiltonian 

A postulated  Hamiltonian  for  the  drop  will be written  as  the  sum of 

three  terms,  as  follows: 

Kinetic  energy, Ha: 

where V is the  volume of the  drop. 

Potential  energy Hb associated  with  surface  tension a: 

Hb = a l d f  
S 

2rc rc 
= a J  J[ [ ' + ( v r l i ' ] r 2 }  sin 8 d e  dq, 

0 0  r=r,+q(8,cp;t) 

where S is the free  surface  and d f  is  a  differential  element of S.  
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Potential  energy H ,  associated  with  volume of the drop  when po is the 

pressure of the  surrounding  vapor: 

Equation (12b) is derived  from  differential  geometry  in  Appendix  A, 

where  a  quantity y is defined as  follows: 

For  the  surface  coordinates q (0,cp;t) on  the  actual  path,  the  integral  that 

occurs  in H, is  just  the  constant  volume of the  incompressible  fluid. 

However  for  variations of q away  from the  actual  path,  the  volume  and  in 

turn H ,  may  vary  also,  and H ,  is needed to arrive  at  the  Cauchy  integral 

of an  equation of motion in  its  usual  form,  Eq.  (9b). 

B. Hamilton’s  canonical equations 

The  canonical  form of the  equations of motion can  be  developed by 

regarding @(r,e,V;t)  and q(8,V;t) as  fields  that  can  be  varied 

independently.  However,  these  variations  are  subject  to  the  conditions 

that  on the actual  path,  satisfies  the  Laplace  equation,  Eq. (4), 

throughout  the  interior of the drop  and on its surface,  and  that Eq. (5) is 

satisfied on the actual  path. 
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Then  for  the  actual  path, the relation 

and  Gauss’s  theorem  can  be  applied  to  express the kinetic  energy  in  terms 

of quantities  evaluated  at  the  free  surface, as  follows: 

Next  we  will  calculate  the  change in Ha when @ is  varied  from  the  actual 

path  while r\ is  held  fixed on the actual  path. To do this let @ + @ + 8@ 
in  Eq.  (1  la),  and  obtain  the  following  result thru first  order  terms  in 8@: 

Use 

and Gauss’s  theorem  to  express  Eq. (16b)  as 
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o r  

where  the  result  for d j  derived  in  Appendix  A  has  been  used. A basic 

variational  derivative  on the surface  where r = ro + q(e,<p;t) and 

r’ = ro + I@’, 9’; t )  takes  the form 

and  this  can  be  used to calculate  the  variational  derivative &Ha /6@ from 

Eq.(19).  After  integrating . over 6 functions  and  dividing by p ,  one  finds 

the  following  result: 

Note  that 

because Hb and H ,  do not involve a. 
Let  the  canonical  momentum X be defined by 
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The  notation  in  Eq. (22) is  used to indicate  that  functions ‘Jc and @ are 

defined  throughout  the  drop  and on its  surface  and  for  all  times. 

However,  only  when ‘Jc is  evaluated  on the free  surface  is  it  the  canonical 

momentum.  Also,  let  the  canonical  coordinate  variable  be q(e,<p;t). Then 

one of Hamilton’s  canonical  equations  for  a  continuum  takes  the  form 

Combining  Eqs.  (21 a)-(23),  one  arriv es at  the following  result 

which  is  equivalent  to  the  kinematic  boundary  condition  in  Eq.(6). 

Consider  next  the  first  order  variation 6H‘ of  the  Hamiltonian 

when @ is  held  constant  on  the  actual  path and ?l is  varied  from  the 

actual  path by an  amount &Tl according  to  the  prescription ‘ll .j ‘ll+ 6q. 

First  treat 6H:. Variation of Eq.  (1 1 b)  involves  taking  the  derivative of 

the  integral  with  respect  to  its  upper  limit.  One  obtains 

sin 9’ de’ dq’. 
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A ba sic  variational  deri vative on the  surface  where r = ro + q(e, 9;t) a n d 

r’ = ro + q( e’, 9’;t) takes  the form 

Equation (26) can  be used  to calculate the variational  derivative 6Hb /6?l 
from  Eq. (25). After  integrating  over 6 functions,  one  finds 

The  variational  derivatives 6Hb /6q and 6HC /63l are  evaluated  in 

Appendix  A,  in  Eqs.  (A12)  and  (A15),  respectively.  The  second of 

Hamilton’s  equations  for  a  continuum  is 

. 6H n=--  
h .  

Combining  Eqs.  (10)’  (27),  (A12),  (A15), and (28), one  finds 
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Simple  algebraic  rearrangement of Eq. (29)  yields Eq. (9b),  the  dynamical 

boundary  condition  at  the  free  surface. 

C. Time derivative of the total energy 

The  Hamiltonian  in Eq. (10). represents  the  total  energy of the 

system,  and  the  time  derivative  of  the  total  energy  can  be  readily 

evaluated. 

First  calculate dH,/dt, as  follows: 

Next  apply  steps  similar to those  used in arriving  at Eq.( 19), but  replace 

6 0  there by 6.  This yields the following  result for d Ha / d l :  : 
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2 x  x 

where Eq. (24) was used in the last  step above. 

Next  we  will  evaluate dH,Z/dt. With  the  aid  of Eq. (27), this  term 

can be expressed  as 

, Now refer  to Eq. (12b)  and  evaluate d Hb/dt. If one  follows  steps 

parallel to those used in  deriving Eq. (A10)  in  Appendix  A  but  replaces 6?'l 
there by fi and  then  uses Eq. (A12),  one  obtains 

Next refer to Hc in Eq. (12c) and evaluate d HJdt . .  One finds 
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The  result  in Eq. (A15) can be used to write Eq. (33)  as 

Combining  the  results  in Eqs. (22), (28), and  (31d)-(33),  one  finds 

Finally, Eqs. (31c)  and  (35b)  can be combined to obtain 

Equation  (36)  shows that  the  total  energy of the system  is  a  constant of 

the  motion in  this  exact  theory.  The  importance of this  result  will  become 

more  evident  later  when  a  contrary  result i s  reached  in  low  .order 

perturbation  theory. 
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IV. PERTURBATION THEORY EXPANSIONS 

Formulas  for  perturbation  approximations  can  be  conveniently 

generated  in  two  stages.  First,  terms in the exact  equations  are  expanded 

in  terms  of 'll about the radius ro of the  quiescent  free  surface. In the  next 

stage, @ and T are  expanded  in  powers of a  small  perturbation 

parameter .  

A. Expansions  about  the  radius ro 

Refer to Eq. (6) and  expand  components of the  second  term  as 

follows: 

An approximate  expression  for  Eq. (6) sufficient  for  present  purposes  can 

then  be  found  by  substituting  Eqs. ( 3 6 )  and (37)  into  Eq. ( 6 )  and 

retaining  only  terms that  are accurate thru O(h ). Here h is  a  parameter 

that  indicates  the  degree of nonlinearity and i t  represents  a  factor of @ 

2 

or T. This  yields  the  following  result. 

Kinematic  boundary  condition  at  free  surface  accurate  thru o(h2): 
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il- (39)  

Turn  next to expansion of Eq. (9b)  about ro. Note  that po / p  is  a 

constant  that  does  not  depend  on  time or space  coordinates.  Expanding 

6 about ro , one  finds: 

nlso,[(")2] and (:) may  be  similarly  expanded 
r =ro +TI( 8,cp;r). r =ro +q(e,cp;t) 

about ro. Refer to Eqs. (A6a) and  (A6d) and note  that 

Using Eq. (42a) and (42b),  one  obtains 
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Substituting Eqs. (40)-(42c)  into Eq. 

result. 

Dynamical  boundary  condition  at  the  free s 

(9b),  one  finds 

(42c)  

the  following 

wface,  accurate  thru @A2): 

B. Expansions  in  a  perturbation parameter 

The  second  stage  in  generating  perturbation  formulas  involves 

expanding @ and r\ in the form 

where a perturbation  parameter  has  been  drawn  into  the  perturbation 

functions.  The  subscript  indicates  the  order of magnitude of a function. 

The  linear  equations  (4) and ( 5 )  then  yield 
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By substituting Eqs. (44a)  and  (44b)  into Eq. (9), one  obtains  the 

following  kinematic  boundary  conditions  for  the  perturbation  functions, 

evaluated  at ro: 

Substituting  Eqs.  (44a)  and  (44b)  into Eq. (43), one  obtains  the  following 

dynamic  boundary  conditions  for  the  perturbation  functions,  evaluated  at 

ro: 

Po 2a 

The  zeroth  order  equation,  Eq.  (47a),  yields  the  Young-Laplace 

formula '  for the case of an undisturbed  spherical  drop in its  usual  form 

if one  writes 
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where p1 is the  constant  pressure  just  inside the free  surface.  Then  Eq. 

(47a)  can be expressed  as 

2a 
'0 

P l - p 2 = - .  

C. Energy perturbation thru second  order  terms 

The  goal  here  is to develop  a  formula  for ene rgy  that  takes  into 

account  the  leading  order  terms  that  depend on the  solutions of the 

linearized  equations of motion, 1<p and 1"), and  neglects  all  nonlinear 

effects  involving 2Q) and 2") and  higher  order  terms.  Energy  terms 

involving l<p and 1 l l  only  thru  second  order  will  be  retained. 

Perturbative  formulas  for  energy  will  be  derived  here by expansion of 

terms H a  and Hb .. The  external  pressure PO is  unimportant  for  this 

analysis.  Therefore  it will be  assumed  that po=O, so that H can be 

neglected.  An  overbar  will  be  used  to  indicate  terms  in  this 

approximation.  Then 
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Now consider  the  formula  for H b , ,  given by Eq. (A7b).  Expanding  the 

integrand  about ro yields 

Equations (49), (50),  and (52) will be used later in this  paper to 

examine  whether  the  energy  is  a  constant of the motion  at  this  level of 

perturbation  theory. 
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V. SOLUTIONS OF PERTURBATION  EQUATIONS 

In this  section  solutions will be constructed  for the first  and  second 

order  systems of perturbation  equations  derived  in  Sec.IV.  According  to 

Eqs.  (45a)  and  (45b),  in  every  order of perturbation  theory the velocity 

potential  is  required  to  satisfy  Laplace's  equation,  Eq.  (4),  expressed  in 

spherical  coordinates and also  satisfy  a  boundary  condition  at r=O given 

by  Eq. (5). 

The  velocity  potential  is  time-dependent  in  general,  and  it  can  be 

expressed  as  a  superposition of eigenfunctions of Laplace's  equation  with 

time  dependent  coefficients,  as  follows: 

Laplace's  equation  and  the  boundary  condition  at r=O, Eq. (5), require 

t h a t  

The  coefficient p;,,(t) that appears  in Eq. (3) can be written  as  a  sum of 

perturbation  terms,  as  follows: 
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Furthermore, the surface  displacement  can be expressed  as 

where 2; m ( t )  can be written  as a  sum of perturbation  terms,  as  follows: 

A. Tesseral harmonics C;,m (8, <p) 

The  functions ci,,(e,Cp)) that  appear  in Eqs. (53a) and  (55a)  are 

tesseral  harmonics,'  which  provide  a  complete  set  for  expanding 

functions of 8 and Cp. The  tesseral  harmonics  are  real  valued  functions 

that  are  essentially  the cos(mcp) and sin(mCp) versions of the more 

familiar  scalar  spherical  harmonics, &,,(8,<p). Properties of t h e  

c:m (e,@ that are important  for  this  analysis will  be summarized  shortly. 

The  ranges of summations  in Eqs. (53) and (55) are as  follows: 

The ! = 1 terms  imply  a  shift of the center of mass of the drop  from the 

original  origin.  This  is  demonstrated  in  Appendix B for  an  almost 

spherical  drop.  Therefore = 1 must be excluded  from  the  summation to 

enforce  assumptions of the model  stated  earlier. 
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The  functions C;,,(e,Cp) for s=l and s=-1 are  given by the  following 

formulas :  

where 

N = ( - y [  (2& + 1) (e - m)! I,,, . 
4n: (!+m)! 

The  function &,,(e) is  an  associated  Legendre  polynomial. 

It can be shown  that 

Note  that Eqs. (57b)  and (59) imply 

Also, the  functions &,,(e) satisfy 
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Equations  (57a)-(59a)  imply  that  the  tesseral  harmonics  can be expressed 

a s  

Spherical  harmonics  possess  the  following  property: 

With  the  aid of Eq. (60) one  can  show  that  the  orthogonality  and 

normalization  relation for .the  tesseral  harmonics  is 

where 

For m # O  : N ( ! , M , s ) =  1 

For m=O;  s =  1 : N(! ,m, s )=2  

For m =O;  s=-1 : N(! ,m, s )=O.  

The  formulas  for ct,,(e,Cp) and C(fn(8, cp) that appear in Eqs.  (57a) 
1 

and (57b)  can be expressed  as  follows by using Eq. ( 5 8 ~ ) :  
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Here  the  summation  index h takes  on  the  values  1  and  -1.  The 

coefficients ai'" are  given by the  following  matrix  equation: 

Using  the  property  that  the  functions c&(e,cp) are  real  valued  and  also 

using Eqs.  (60)  and  (63a),  one  can  derive  the  following  alternative  form  of 

Eq.  (61): 

All of these  properties of tesseral  harmonics  will  find  useful 

application  in  what  follows. 

B. First  order perturbation  theory 

The  linearized  equations  based on Eqs.  (45a)  and  (45b)  with n=l  

together with Eqs. (46a)  and  (47b)  yield  Rayleigh's  results 12  for capillary 

waves in a liquid drop. This  will be evident from what  follows.  The  first 
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step in solving  these  equations  is to operate  on Eq. (47b) with a/&. This 

yields 

Substitution of Eq.  (46a)  into (66) gives,  at r=rg: 

Now substitute  the  expression 

into  Eq. (67). Then use Eqs.  (57a)  thru (58c) and also  use  the  following 

equation  satisfied by spherical  harmonics: 

One  finds  that  at r=ro , 
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where 

The  tesseral  harmonics  are  linearly  independent; so Eq. (70a)  implies  that 

This  equation  for  harmonic  oscillation  can  be  written  as 

liie",,(t) + 6 = 0 9 

where  

With  the  aid of Eq. (53b)  one  finds 

e 
Ri(r0) = - . 

'0 

Now the  result  in Eq. (7 IC) can be expressed as 
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which  gives  the  frequency  found by Rayleigh  for  capillary  waves in  an 

almost  spherical  liquid  drop. 

The  general  solution of Eq. (71c) is 

Next  refer  to Eqs. ( S a )  and (56 )  and  write 

NOW substitute  Eqs.  (68) and  (74)  into Eq. (46a) and obtain 

Linear  independence  of  the  tesseral  harmonics  implies  that  the 

individual  coefficients in  Eq. (76) vanish;  therefore 

f 

Now operate  on  Eq.  (76b) with j d t  and take Eq. (74)  into  account.  One 
0 

finds 
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where We satisfies Eq. (71c). 

C. Energy perturbation  formula thru second  order terms 

revisited 

It is  instructive  to  evaluate H in  Eq. (49) using Eqs. (50) ,  (52), 

(78a),  and  (78b).  One  finds 

I.m,s t',m',s' 
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where Eq. (61)  has been used to perform the integration  over  angles, and 

Kronecker  deltas  have been summed  over. 

Now consider  evaluation of H b  . Note that the term  in Eq. (52) that 

is  linear in  vanishes  when  integrated  over  all  angles.  Substitution of 

Eq. (78a)  into (52) and use of Eq. (69) yields 

Next  use Eq. (61) and then sum  over  Kronecker  deltas.  The  result  is 

2 Substitute  the  expression  for 0, in Eq. (71c) into Eq. (780, and  obtain 
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Next combine  Eqs.  (78d),  (78g), and (49) and then use the  relation  sin2 x 

2 + cos x = I .  One  finds 

The  quantity  in  square  brackets  in  Eq.  (78h)  is  a  constant of the  motion. 

However,  the  last  term  in  Eq.  (78h)  shows  that  at  this  level of 

approximation  the  energy  has  a  time  dependence. 

D. Second order perturbation theory 

The  second  order  theory  based on Eqs. (46b)  and  (47c)  includes  the 

leading  nonlinear  interactions  among  capillary  waves  when  the  waves  are 

defined by the  first  order  theory. 

The  first  step in solving  these  equations  is to operate  on  Eq.  (47c) 

with a / at .  This yields 
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0 .  

Eq. (79) can  be  converted to the following  form  with  the  aid of Eqs.  (46a) 

and (46b).  At  r=ro, 

The  linear  operator that acts  on 2@ on the left  hand  side of  this  equation 

is  the  same  operator that acts  on I @  in Eq. (67).  The  right  hand  side of 

Eq. (80) does  not  involve 2@.  However, it  contains  terms  that  are  second 

order  in 1 @ and ~ q ,  as  indicated  next,  where  all  terms  are  evaluated  at 

r=ro: 

l S j S 7  
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E. Evaluation of  terms in P involving  only  scalar functions 

The  functions 4 thru 5 depend  only  on  scalar  quantities  and  they 

can  be  readily  evaluated  using Eqs. (63)  and (69) together  the 

completeness  property of scalar  spherical  harmonics.  The  completeness 

property  allows  one  to  write 

The  coefficients bh,M3 can be evaluated  using the relation 
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Here  an  abbreviated  notation  for  Clebsch-Gordan  (C-G)  coefficients 

C(Ll ,L2,L3;Ml ,M2) adopted by Rose' has  been  used. A third M index is 

not expressed  explicitly in this  notation,  but  it  is  understood  that 

M3=M1+M2 in  any  C-G  coefficient  that  does  not  vanish.  The  factor 

% ( M I + M 2 )  is  therefore  redundant,  but  it  is  retained  here  for  clarity. 

With  the  aid of Eqs. (60), (82), and (83), one  finds 

To evaluate 4,  first.  refer to Eqs. (63), (68), and (75) and  write 

* 
Recall  that 1?l is real  valued, so that ~'T)=~ll . Furthermore,  

z;,,(t) = ( z:,, ( t ) )  since Ct7,(8, 9)  is  real  valued. The  operand  in Eq. 

(81b)  can  then be treated  as follows: 

* 
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where Eq. (58c) has been  used in the  last  step. 

Next  substitute  Eq.  (87c)  into  (81b).  and  rewrite  the  result  with  the 

aid of Eqs.(82)  and (69). The  following  formula  for 4 then  emerges: 

p1 = 2 (uhAru$”1 D L ~ , M ~  (f!,m,s,A;4’,m’,s’,h’;ro) 

where 

The  function P’ in  Eq.  (81c)  will be treated  next..  First  use Eqs. 

(71b)  and  (85)  and  obtain 
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Then use  a  procedure  similar to that  for 5 ,  and find 

L l . M l  C.tn.s,k C’.m’,s’,A’ 

where 

Turn  next  to  evaluation of 4 in Eq. (81d).  Note  that 

Then  use Eq. (85) and obtain 

Take  the  time  derivative of Eq. (93b) and obtain 

Then with  the  aid of Eqs. (74) and (77a), one  finds 
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Combine Eqs. (93a) thru (95)  with  (81d)  and  then  apply  the  same 

procedure as before.  The  result is 

where  

Next  evaluate  the  function P4 in Eq. (81e).  Use Eqs. (86),  (93a), 

(93b),  and (69). Then  apply  the  same  procedure as before.  One  finds 

where 
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The  function 4 in  Eq. (810 can be evaluated  as  follows.  First use 

Eqs. (93a),  (93b), and (69) to simplify the factor  involving I q .  Then use 

Eq.  (86) to rewrite the factor 1 7 7 .  Substitute  these  results  into  Eq.  (810 

and  apply  Eq.  (82) to the subsequent  equation.  One  finds 

Ll.Ml t.m.s,A C’,m’,S‘,A’ 

where 

This  completes  evaluation of terms  involving  only  scalar  functions. 

F. Evaluation of  terms  involving  vector functions 

Turn  next  to  evaluation of and 4, which involve  dot  products of 

two  vectors.  The  gradient  formula,’  which  occurs  in  treatments of 

angular  momentum  in  quantum  mechanics,  is  the  key  to  evaluation of 

these  terms.  The  gradient  formula  is  as  follows: 
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Here v ( r )  may be any  differentiable  function of r, q,,(e,cp) is  a  scalar 

spherical  harmonic,  and G?+@,’p) and q?-l(e,Cp) are  vector  spherical 

harmonics.’ 9920 Some  properties of vector  spherical  harmonics  that  are 

important  for  this  analysis  are  given  in  Appendix C, and  the  following 

result  is  established there: 

A  formula  for  ah,^^ is  also  derived  in Appendix C. 

With  the  aid of Eq. (85) and  the  time  derivative of .that  equation, 

one  can  write 8 in Eq. (81g) as  follows: 

e,m,s,k !‘,m’,s’,k’ 

Next  apply Eq. (102) to rewrite the  gradient  terms  in Eq. (104),  and  also 

use Eq. (95) to express I &(f) in terms of 2; ,(t). Then  apply Eq. (103) 

to the result.  One  finds 
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where 

The  term P7 in Eq. (81h)  can  also be evaluated  with the aid of the 

gradient  formula.  The  quantity [(v1q).(v1@)] can  be rewritten  with the 

aid of Eqs. (85), (86), (102), and (103). Applying Eq. (69) to  that  result, 

one  can  complete  the  evaluation of P7. The  result  is 

4 5  



where  
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Substitution of Eq.  (109)  into (80) and use of  Eqs. (69) and  (71c)  yields 

Now multiply Eq. (1  11) by ci,,(e,Cp) and integrate  over  the  unit  sphere. 

Use  Eq.  (61) to evaluate  the  result of this  operation  on  the  left  hand  side 

of Eq. ( 1  1 1 ) .  Use Eqs. (60)  and (63) and  the  fact  that  the  tesseral 

harmonics  are  real  valued to evaluate the result of this  operation  on  the 

right  hand  side of Eq. ( 1  11).  Then  one  obtains 

where  the  range  for j is 1s j 5 7. 

Refer  to  Eqs.  (59c)  and  (62a)-(62c)  and  note  that  the  only  cases  in 

which N(t ,m, s )  vanishes  are  those  where c&(e,Cp) itself  vanishes. 

Therefore  those  terms  give  no  contribution  to 2Q) and 2 q .  In  what 

follows  we  will  specify  that  these  terms  are  not  included  in  the 

summations.  Then N(C,m,s) # 0 in the terms  that  actually  occur  in  Eq. 

(1  12). Now perform the sum  over  Kronecker  deltas  in  Eq.  (1  12).  Then  use 

Eqs.  (74)  and  (77a) in  the  right  hand  side of that  equation.  Simple 

algebraic  rearrangement of the  subsequent  equation  yields  the  following 

result: 
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b 

where 

Equation ( 1  13) is the relation that we wished to derive. 

H. Time  dependence of second  order  coefficients 

Solving Eq. (1 13) for the time  dependent  amplitudes 2 p ~  ~ ( t )  is the 

task  that will be  addressed next. Toward  that end, we  shall first express 

the time  dependent  sines and cosines in Eq. ( 1  13)  in terms of complex 

exponentials. The  result is 

S 
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The  complete  solution of Eq. (1 15)  can  be  constructed as a  linear 

combination of solutions of a  differential  equation of the  following  form: 

The  solution of Eq.( 1 16) is7: 

(1   17a )  

(1  1 7 b )  

The  steps  involved in  obtaining  the  solution  are  shown in Appendix D. 

In order to express  the  solution of Eq. (1  13)  efficiently,  it  is  useful to 

first  introduce  functions ,SL , 2S  Lt JLt J L .  It  is  specified  that CI)L,O~, 

and.CI)p  are  all  different  from  zero.  This takes  into account  that L, e, and 

e’ are  different  from one. Then 
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For 0; #(0[ + Wet)2 : 

, s, (e ,  m, s; e’, m’, s’; t )  

For WL = (We + 2 

There  are  two  cases  for 3SL , as  follows. 

Case 1 .  For 0~ # ( 0 e  - Oet)2and (me -Wet) # O :  2 

3 s( e, m, s; l’, m’, s’; t )  

( 1  20a)  
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Case 2. For 0~ # (Ut - 0t’)2and (Ut -Ole’)  =O: 2 

3 s, (e ,  m, s; e’, m’, s’; c) 

There  are  two  cases  for & ,  as  follows. 

Case 1. For 0~ = ( 0 1  - O i  )2 and ( 0 ~  -We#) f O  : 2 

4 s, (e,  m, s; e’, m’, s’; t )  

2 Case 2. For 0~ = ( 0 1  - 0i )2and ( 0 1  -ae’) = 0: 

4 s, (e,  m, s; e’, m’, s’; t )  

( 120b)  

(121a )  

( 1 2 1 b )  

The solutions of Eqs. ( 1  13) and ( 1  15)  constructed  with  the aid of 

results in Eqs. (1 16), (1  17a), and (1 17b)  can now be expressed  as 
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Each  term  in  the  sum in Eq. (122)  consists of three  kinds of factors. 

EL,M,S,A depends  on  spatial  variables.  The  quantities lp:,,(o) 1pp/,,’(o) 
S’ 

depend  on  which  first  order  waves  are  excited  and  on  their  amplitudes. T L  

depends on time  and it can  be  evaluated  with  the  following  formulas. 

For 0; # ( 0 1  + We’)2and 0; # ( 0 e  - 

TL (e, m, s; a’, m’, s’; t )  

= lSL(t,m,s;t”,m’,s’;t) + 3SL(!,m,s;k”,m’,s’;t) 

For 0; = (We + Wet)2and 0~ 2 # ( 0 1  -met) 2 : 

T~ (e ,  m, s; e’, m’, s’; t ) 
= 2 ~ L  (e ,  m, s; e’, m’, s’; t )  + 3S( e, m, s; e’, m’, s’; t )  . 

TL (e, rn, s; e’, m’, s’; t )  

= ( e, m, S ;  e’, m’, s’; t )  + 4SL (e, m, s; e’, m’, s’; t )  . 

( 1   23a )  

( 1 2 3 b )  

( 123c)  
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Certain  features of the  time  dependent  factor T, i n  2 p ~ , ~ ( t )  S 

require  further  comment.  First i t  should be observed  that  the  exact 

resonance  condition  in  which  a  frequency  denominator  vanishes will  

hardly  ever  occur in practice, and may be regarded  as  accidental  because 

the  frequency  spectrum  for  capillary waves in  a  liquid  drop  is  discrete. 

However,  in  those  rare  instances  where  a  denominator  does  vanish 

exactly,  the  coefficient 2 p ~  ~ ( t )  contains  a  term  that  increases  linearly S 

with  time.  This  behavior  appears  in  the  functions J L  in  Eq. (1 19) and J, 
in Eq. (121 a). For long  enough  times,  resonances  in  second  order  theory 

would  produce  waves of such  large  amplitude  that  they  would  dominate 

the  first  order  waves.  The  assumptions of perturbation  theory on which 

these  results  rely would  not be met under  these  conditions.  However,  the 

linear  growth  over  some  time  range  is an important  feature  that  may  lead 

to  turbulence.  This  matter  is  discussed  in Sec.VI. 

For  the  discrete  spectrum  that we are  considering,  non-resonant 

conditions  apply  in  almost  all  cases.  Let us focus  on ,SL in Eq. (1 18) as an 

example of non-resonant  behavior.  First  it  should  be  noted  that  only 

terms  with  sinusoidal  time  dependence  occur  in J L  , so that  the 

magnitudes of these  terms  have  finite  upper  bounds  for  infinitely  long 

time  intervals.  However,  any  spatial  state with a given  value of L oscillates 

with  at  least  two  different  frequencies,  viz., OIL and (We + W e . ) .  Of 

course,  in  the  formula  for 2 p ~  ~ ( t ) )  the e and e' are  summation  indices, S 

and  there  will  be  more  than  two  frequencies in any  spatial  state.  with 

index L if more  than  one first  order  state is excited  initially.  The  strength 

of any  sinusoidal  term  is  determined by a frequency  dependent 

denominator  which is not zero.  Although  each term is clearly  periodic in 
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time, i t  is  noteworthy  that  for  waves  that  are  near  resonance,  there is 

some  time  interval in  which  the  time  dependence of , S L  approaches  the 

time  dependence of J L .  The  length of that  time  interval of linear  growth 

increases  as the  near resonant  waves  approach  a  resonant  condition.  This 

will be demonstrated next. 

I. Linear  time  growth of near-resonant  terms 

Start  with  the  formula I S L  in Eq. ( 1  18) and  write  the  factor 

involving  a  denominator  as  follows: 

1 1 I 

1 c 1  1 I 
( 1  24a)  

( 1  24b)  

where AU is given by 

A W = W L - ( W e + O , # ) .  ( 1  24c)  

Only the two  leading  terms in a  Taylor's  series  expansion of the  second 

term in Eq. (124a) that  are  shown  explicitly in Eq. (124b) will  be  retained 

in  what  follows. 

A trigonometric  identity  for  sin(x-y)  allows us to write  the  first term 

of Eq. (1  18)  as 
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( 124e)  

Here the  leading  terms in series  expansions of sines  and cosines  have been 

retained.  

Near  resonance,  where (AO/OL) << 1, and  for  times  t  such  that 

[(Ao)~] << 1, one  can  retain  the  leading  terms in the  expansion of  the 

first  term  in  Eq. (1  18)  and  obtain  the  following  approximate  equalities: 

= {- "&tCOSIOLf 1 +(a;,, +a;,,,* 
' 11 

(1   24f )  

Similar  treatment of the last  two  terms of Eq. (1 18)  yields the following 

approximate  equality: 
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( 1  2 4 h )  

Substituting Eqs. (124g)  and  (124h)  into the formula  for 1SL in Eq. 

(1  18), one finds  that  the  terms  with  the  small  quantity Ah0 in their 

denominators  cancel,   and one obtains  the  following  result .  

ForlACO/OLJ << 1 and)ACO)t) << 1: 

(1  24i)  

The  limiting  form of 1SL in Eq. (124i)  agrees with the result  for ~ S L  at t h e  

exact  resonance  condition  given in Eq. (1  19) when one  takes  into  account 

that OL = 0 1  + at  resonance  in Eq. (1 19).  This  result is  important  for 

the  proposed  explanation of intermittency  in  ripple  turbulence  discussed 

in Sec.VI. 

J. General results for 2q(& 9; t )  

Now we  shall  derive  formulas  for 2Tl(e,cp;t), the  second  order 

contribution to displacement of the free  surface of the liquid. In what 
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( 126d)  

The  term (Vlq).(V@) can be  evaluated  using  the  same  basic 

procedure  as  that  applied  when  treating P7 in  Eqs. (8  lh)  and  (107)  and 

7 D e,m in  Eq.  (108).  The  result  is 

where  

(1  26e)  

( 1  26f)  

Next  substitute  Eqs.  (126a)-(126c)  and  (126e)  into  (125).  Eliminate 

~z;,,(t) from  the  subsequent  equation  with  the  aid of Eq.  (77a).  Then 

multiply  that  result by ci,,(e,Cp)) and  integrate the subsequent 

expression  over  a  unit  sphere.  Then use Eqs. (60), (61),  and ( 6 3 )  and 

solve  for z i&( t ) .  The result is 
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A C.m.s,h t’,m’.s’.h’ 

J 

where 

Next  combine Eqs. (122)  and  (127) and obtain 

A formula for 2 z i , , ( t )  can  be  obtained by integrating Eq. (129) with 

respect  to  time.  The  indefinite  integral  is  sufficient  to  find  the  time 

dependence  since  the  initial  values 2 z& (0)have  not  been  specified. T h e  

result  is 
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In  an abbreviated  notation  where  some of the  arguments  of  functions  are 

suppressed,  we  have 

It is  useful  to  introduce  functions i V L  that  correspond to j S L  in Eqs. 

(1 18)-( 121)  in  order  to  efficiently  represent U L .  For  each  value of j , 

where 15  j 9, we have 

j ~ L  (e,  M ,  S ;  e’, M’, s’; r) 
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For 0~ = (Oe + : 2 

1 + 4wi(u1+ W p )  [[WLf+(a~,,.+a;:,,’)]+cos[o~t-(a~,~ +a;:,*’)]]] 

There are two cases  for 3VL, as follows: 

Case 1 .  For OL # ( 0 1  - Wet)2and ( 0 1  -“e t )  f O :  2 

3VL (e, m, s; e’, m’, s’; t )  

( 1 3 6 a )  
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Case 2. For 0~ 2 # (W! -0et)2and (Ut - m e t )  =O: 

3vL ( e ,  m, s; e’, ”, st; t>  

There  are  two  cases  for 4VL , as follows: 

Case 1. For 0~ 2 = (O! - Oet)2and ( 0 4  -me!) f O :  

4VL(e,m,s;e’,m’,s’;t) 

( 1 3 6 b )  

+ 4 0 3 0 e  - W e . )  [cos[aLt+(al, -a;:,,,)] + COs[aLf“(a; , ,  -a ; : ,m , ) ] ] } .  

Case 2. For 0~ = ( 0 e  - 01t)2and (Oe -Wet)  =O: 2 

4VL (e, m, s; e’, m’, s’; t )  = 0 . ( 1 3 7 b )  

U, can  now be specified  in  terms o f  non-overlapping  regions of 

frequency,  just  as  was  done  previously for T L .  The  formulas  are  given 
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( 1  38a)  

I IL  (e, m, s; e’, m’, s’; t )  = 2VL (e ,  rn, s; e’, M’, s’;t) + 3VL (e,  m, s; el, m’, s’; t )  . (138b)  

For 0; # (al+ o,!)*and = (01 -Ut’) 2 : 

UL (e, m, s; e., m’, s’; t )  = *VL (e, m, s; e’, m’, s’; t )  + 4VL (e, m, s; e’, m’, s’; t )  . (138c)  

This  completes the evaluation of U L  in Eq. (130). The  next  task  is to 

evaluate  the  function W in Eqs.( 130) and (132).  Using,  a  trigonometric 

identity,  one  can  write the integrand of Eq. (132)  as  follows. 

For (We -ae’) f O :  

For (We -ap’) = 0: 

(139a )  

( i 3 9 b )  
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Substitute Eq. (139a)  into  (132)  and then integrate.  After  that  substitute 

Eq. (139b)  into  (132) and integrate.  One  finds the following  results 

For (0, -Ul . )  f O :  

W(  e, m, s; e’, m’, s’; t )  

W(  e, m, s; e’, m’, s’; t )  

c 

This  completes  the  derivation of formulas needed 

Eq. (1 30).  Then 2 q(e, 9;t) can be evaluated  using 

(1   40a )  

( 1 4 0 b )  

VI. DISCUSSION OF IU3SULTS 

A. Canonical formalism 

to evaluate 2~;, ,( t)  in 

Eq. (1  10). 

The  variational  theory of a hydrodynamic  system  with  moving 

boundaries  involves a number of subtle  problems.  Therefore  it  is 

important  to  clearly  describe  the  assumptions  and  mathematical 
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procedure  and  demonstrate  the  self-consistency  of  the  method by  

presenting  details,  as in  Sec.11. In earlier  work,  Zakharovl’  treated  the 

exact  theory of finite  amplitude  waves  on  a  fluid  surface  in  planar 

geometry.  He  showed  that  the  equations  for  the  time  dependence of  the 

surface  could  be  expressed  in  canonical  form.  However  the  details of 

Zakharov’s  method  differ  in  non-trivial  ways  from the corresponding 

elements of the  present  theory. 

The  essence of the  difference  between  the  two  methods  is  the 

condition  under  which  the  variation 6 0  is  taken.  In  the  present  theory, 

the  variation 6@ of the  velocity  potential  in  the  interior of the  liquid  as 

well  as  on  its  boundary  is  taken  at  any  instant of time  with  the  surface 

held  fixed  at  its  actual  path  position  for  that  time  instant. An important 

consequence of this  prescription  for  varying  the  velocity  potential  is  that 

the  canonical  momentum  and  canonical  coordinate  are  manifestly  treated 

as  independent  variables  in  terms of variables  evaluated  at  the  drop 

surface. 

In Zakharov’s  treatment,  evaluated  at  the  fluid  surface,  which 

Zakharov  then  calls y ,  is  a  generalized  coordinate  and  the  surface 

displacement ‘ll is  a  generalized  momentum.  This  particular  difference 

between  Zakharov’s  treatment  and  the  present  treatment  is not of 

fundamental  importance  since  it  is  known  from  general  theory  that  a 

canonical  transformation  can  interchange  canonical  momenta  and 

coordinates.  However,  there is a  fundamental  difference in the two 

theories  that  results  from  Zakharov  considering the variation 6 0  to be a 

function of 6q. Since 6<D evaluated at the drop’s  surface is a generalized 

coordinate i n  Zakharov’s  theory,  one  encounters  the  seemingly 
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paradoxical  situation in which  the  canonical  coordinate  is  a  function of 

the  canonical  momentum 'll, and  they  are  therefore  not  independent 

variables.  This  appears  to  conflict with general  principles  of  canonical 

formalism.  This  matter  needs  further  clarification  in  Zakharov's  method. 

Theoretical  treatments  of  surface  waves  and  wave  turbulence  have 

utilized  the  properties of canonical  variables  in  a  large  body of published 

work.  This  provided  a  strong  incentive to establish  that  the  present  theory 

could be expressed in canonical  form.  Furthermore,  with  the  aid of 

canonical  equations  it  was  relatively  simple  to  demonstrate  that  the 

energy of the  system  is  a  constant of the  motion  in  the  exact  theory.  This 

was  especially  important  in  establishing  self-consistency  of  this  method 

because  in  low  order  perturbation  theory of the  almost  spherical  drop, 

energy  is  not  a  constant of the  motion.  This  result was developed  in  detail 

in  Sec.V.  This  puzzling  result  should  be  a  proper  subject  for  further  work 

and  comment. As stated  in  Sec.V,  this  difficulty  does  not  occur  in  planar 

geometry  where  almost  flat  surfaces  are  treated. 

Additionally,  it  should be noted  that  the  equations of motion  thru 

first  order  for  the  surface of an  almost  spherical  drop  obtained  from 

perturbation  expansions of the exact  equation of motion  cannot  be 

obtained  as  canonical  equations  based on  the  perturbation  expansion of 

the  exact  Hamiltonian thru second  order.  This  condition  is  related to the 

geometric  factor r2 in the  differential of the  surface  element d f ,  where 

d& 'yr' (e, <p;t)sin ededv.  It is  noteworthy  that if the  Hamiltonian d.ensity 

i n  Eq. (52)  were  multiplied by (1 -q /  ro) =: ro / r(e,cp;t), then  energy 

evaluated  thru  quadratic  terms in  perturbation  theory  would be constant 

in time.  However,  a  justification  for  this  step has not yet  been found. 
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Absence of the canonical  property is related to the  difficulty  with 

the energy not being a constant of the motion  at  this level of perturbation 

theory.  But  just  as  important,  absence  of  the  canonical  property 

undermines  application  of  the  canonical  transformation  method  in 

treating  surface  turbulence  in  liquid  drops  in  perturbation  theory. 

Canonical  formalism  has  frequently  been  used  in  applying  perturbation 

methods  in  theories of turbulence  in  surface  waves  on  almost  flat 

surfaces. 

B. L=l tesseral  harmonic terms 

In  Appendix C it  is  shown  that  the  presence of an L=l tesseral 

harmonic  contribution  to  surface  displacement  would  imply  displacement 

of the  center of mass of an almost  spherical  drop.  In  the  model  considered 

in  this  paper, it  was  specified  that  the L=l terms  must  be  absent  in  all 

orders of perturbation  theory.  However,  even if the  center of mass were 

not  constrained  to  be  stationary,  and  even if L=l terms  were  absent  in 

first  order  perturbation  theory,  there  is a possibility  that L=l  t e r m s  

would  occur  in  second  order  because of nonlinear  interactions  involving 

frequencies 0~ = 0 1  - = 0, where J! = J!’ # 1. Analysis  shows  that  if 

such L=l terms  did  occur,  they  would have a t2 time  dependence  in the 

velocity  potential. A proper  method  for  dealing  with  that  situation  would 

require  further  analysis. 

In  the  early  stages of development of the  present  theory,  it  was 

planned  that  the  model  would  consist of a liquid  mantle  surrounding a 

thin solid,  rigid  shell.  For  example, the  shell  could be imagined as a ping 

pong ball,  say  having  outer  radius rC. Then a liquid drop would occur as a 
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limiting  case in which rc tends to zero. If one were to disregard L=l  terms, 

the  mathematical  theory of this  liquid  mantle  would  differ  from  the 

present  model  just in the  formula  for the radial  function R,(r) in  the 

expansion of the  velocity  potential.  The new radial  function  would  satisfy 

a  boundary  condition  that  the  radial  component of the  velocity  vanish  at 

rc  instead of at r=O. The  liquid  mantle  model  was  abandoned  because  it 

appeared  that L=l terms  that  involve  motion of the mantle  with  respect to 

the  rigid  shell  might  occur  even  when  the  center  of  mass  remained 

stationary.  The t2 time  dependence  in  velocity  potential  for L=l terms  that 

might  then  occur  in  second  order  perturbation  theory  would  require 

analysis  and  interpretation  beyond  that which  has been  considered so far. 

C. Intermittency in wave turbulence 

A full  description of the  path  to  turbulence  would  require 

calculations  that  usually  involve  statistical  methods or dimensional 

a n a l y s i ~ . * ’ ~ ’ ~ ~  Nevertheless,  the  second  order  perturbation  results i n  this 

paper  that  can  describe  an  initial  step  on  a  path  to  turbulence  suggests  a 

physical  mechanism  that  may  be  responsible  for  intermittency,  that  is, 

occurrence of large  amplitude  fluctuations  in  the  surface  over  relatively 

small  areas. 3 , l  1 

The  proposed  explanation  for  intermittency  can  be  understood by 

considering  a  simple  situation in which  two  first  order  capillary  waves  are 

excited  at  high  amplitude,  and  where  the sum of  the  first  order 

frequencies,(Oe +O,l), is  near a  resonant  frequency OL in the  first  order 

spectrum.  According to Eqs. (122) and (123a), the time  dependent  factor 
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S T L  i n  the  second  order  amplitude z p ~ M ( t )  will inc lude  a  term ,SL. 

Equation ( 1  18)  shows  that , S L  includes  terms  that  oscillate wi th  

f requencies  (We "0,) a n d  O L  , whose   d i f fe rence   i s  

A 0  = 0 L  - (0, + O1t) , as  in  Eq.  (124c). In Eqs. (124a)-(  124i)  it  was 

shown  that  the  two  terms  with  small  denominators  in ,SL  combine  to 

produce  an  envelope that grows  linearly  in  time,  and  it  was  noted  there 

that  this  growth  persists  for  a  time t whose  length is  determined by the 

condition I ( h ) t l < <  1. In  regions  near the maximum  in  amplitude of the 

spatial  factor  for  the  state  with  frequency 0~ , the  second  order 

amplitude  may  increase  to  large  values  during  that  time  period. 

Eventually,  for  longer  times t, the  inequality  above  will  not  be  satisfied, 

and  linear  time  growth  will  cease.  The  growth may be  said to roll  over. 

According to Eq. (1 18),  for  longer  times  there  will  still  be  two  oscillation 

frequencies  in  the  spatial  state  for O L  . Proximity  to  the  resonance 

condition  will  determine  the  denominators  in Eq. (1 18) that  dictate  how 

large  the  combined  amplitude  in  that  spatial  state  grows.  For  some  even 

longer  time,  the  two  oscillations  will be out of phase  and  the  combined 

amplitude  will  be  small.  However,  for  still  later  times  the  two  oscillatory 

terms  will  achieve  almost  the  same  phase  relation  they  had  at t=O. Then 

the  linear  time  growth  that  occurred near t=O will  occur  again,  and  the 

combined  amplitude  near  the  maximum  for  the  spatial  state 

corresponding  to 0~ will grow to a large  value. 

To see  this in  more detail,  consider the  ratio R = ( 0 1  + W t l ) / O ,  . 

Let T I  and Tz be  the periods  corresponding to ("e +00) and 0~ , 

respectively.  Then R=T2/Tl. Suppose R= 1 .OO 1 ,  which is a near-resonance 
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condition. In a  time  interval At = (1001)q = (1ooo)q both  oscillatory 

terms wi l l  have  completed  an  integral  number  of  cycles,  and  the 

sinusoidal  factors  in  the  near-resonant  terms in Eq. ( 1  18)  will  have 

returned  to  the  values  they  had  near t=O. Then  the  combined  effect of 

these  two  oscillations will be linear  growth  in  time, just  as it was  near t=O. 

Clearly  these  conditions  will  also  occur  at  later  times,  giving  the 

appearance of intermittent  large  fluctuations  in  amplitude  near  the 

maximum of the  spatial  factor  for O L .  

D. Low Energy  Nuclear Physics 

Rayleigh  waves in  the  liquid  drop  model of an atomic  nucleus  have 

provided  a  basis  for  predicting  fairly  accurately  the  threshold of stability 

with  respect to fission22  The  calculations  for  stability  in  that  model  take 

into  account  the  weakening of the  effect of the  ordinary  surface  tension  in 

the  Weizacker  semi-empirical  mass  formula by the  Coulomb  effect 

associated  with  electrical  charge  in  the  nucleus.  The  threshold of stability 

is  associated  with  the  condition  that  the  surface  tension  factor in  the 

frequency  for  Rayleigh  waves  in  the L=2 mode  becomes  negative.  Only  a 

small  perturbation  from  the  outside  is  necessary to induce  fission  in  a 

nucleus  that  is  just  below  the  threshold  when in its  ground  state.  The 

synthesis of the liquid  drop  model  with the  nuclear  shell  model  based on 

independent  particle  motion  provides  a  formalism 2 3  9 2 4  for  calculating y- 

ray emission  from  nuclei  in  which  there  are  collective  motions  such  as 

Rayleigh  waves. 

These  observations  lead us to speculate that turbulence,  like  that in  

a stormy  sea, may be generated  on  the  surface of an atomic  nucleus  that 

7 0  



is  somewhat  below the fission  threshold  where  the  effective  surface 

tension  is  small  and  the  nucleus  can be easily  distorted by external 

perturbations.  Finite  amplitude  capillary  waves  that  are  excited  directly 

may  produce  other waves  that  grow in time due to nonlinear  interactions, 

just  as  in  a  water drop. The  initial  excitation may be due to a near miss by 

a  charged  particle,  for  example.  The  footprints of the second  order  waves 

may  be  sought  in  the  harmonic  structure of y-ray  spectra.  For  long 

periods of excitation  the  footprints of turbulence  and  intermittency  in  the 

wave  motion  may  be  observable.  This  creates  an  interesting  situation  in 

which  turbulence  may  occur in a  nuclear  “drop”  that  is  strongly 

influenced  by  quantum  behavior. 

Experiments  on  levitated  electrically  charged  liquid,  drops by Rhim 

et a1 have  clearly  exhibited  amplitude  growth of shape  oscillations 

induced  by  perturbation .of the  drop.  Furthermore,  the  measured  power 

spectrum of those  oscillations  shows  harmonic  structure  consistent  with 

nonlinear  interactions of finite  amplitude  waves.  Although  the  present 

theory  only  accounts  directly  for  the  second  harmonic,  it  is  expected  that 

a  cascade to higher  harmonics  will be generated  as  the  power  in  the  low 

harmonics  increases.  These  experimental  results  for  drops  support  the 

speculations  on  behavior of a  perturbed  atomic  nucleus  described  above. 
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APPENDIX A 

Potential  energy  contributions to the  Hamiltonian  and t o  

Cauchy’s  Integral  in  spherical geometry 

The  Hamiltonian  contains  two  potential  energy  terms, Hb associated 

with  surface  tension, and Hc associated  with  externally  applied  pressure. 

Formulas  for  these  terms  and  their  variational  derivatives  expressed  in 

spherical  coordinates  and  variables  are  developed  in  this  appendix. An 

assumption of local  mechanical  equilibrium  is  used  to  identify  terms  in 

Cauchy’s  integral of the  Euler  equation of motion. 

A. Surface  tension  term Hb in the  potential energy 

The  energy Hb associated  with  surface  tension a is  proportional to 

the area of the free  surface S, and is given by the formula 
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where d f  is an element of surface  area. An explicit  expression  for H b  will 

be  derived  next. 

The  shape of the free  surface  at  time t is  specified by ?(8,cp;t), 
where  

Any  differential  line  element  tangent  to  the  ,surface  can  be 

expressed  as 

Two  non-collinear  differential  line  elements  and 0 2 ,  tangent to the 

surface,  can  be  found  from Eq. (A3b) by holding cp constant  and  then 

holding 8 constant,  respectively.  This  yields 
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A differential  surface  element d j  normal to the surface and defined 

by and & is  given by 

=t id f ,  

where 

Combining the results  in Eqs. (Al)-(A6d),  one  finds 

Next  calculate the variation of Hb thru first  order  when 'Tl+ r\ + &Tl. 

Using Eq. (A7b)  one finds 
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Integrate  the  second and third  terms in Eq. (A8b) by parts  using 

The  end  point  contributions  to  the  integral  vanish,  and  one  finds 

Use  the  basic  variational  derivative 

to calculate 6 H b  /8?l. After  integrating  over  Dirac 6 functions,  one  finds 
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B. Pressure  term Hc in  the  potential energy 

Turn now  to  the  pressure  term Hc in the  potential  energy  given by 

2 x  x 

The  variational  derivative 6Hc /&l can  be  found 

The  first  order  variation in H ,  due to a small  variation in  is 

(A141 

using  Eqs. (A1  1) a n d  

(A14). The  result  is 

The  formulas for Hb, Hc , 6Hb l6‘Tl found so far  in this 

appendix  are  useful in studying the energy of the system  and in explicitly 

representing  Hamilton’s  canonical  equations  starting  from  the  postulated 

Hamiltonian. 
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Turn  next to the problem of deriving an explicit  representation  for 

the  pressure term in Cauchy's  integral of Euler's  equation of motion.  Let 

p=pressure  just  inside  the  free  surface of the liquid; 

pg=pressure  just  outside the free  surface of the  liquid. 

The  differential  change in volume of the liquid  that  occurs  when  a  surface 

element d !  is  displaced  radially  outward by an  amount 8q(8,(p : t )  is 

given  by 

The  work  done  by  a  non-system  worker  in  producing  this 

displacement  is 

2 x  x 

where  Eqs.  (A5b) and  (A6a)  were  used  in  evaluating d 7 . i .  With  the  aid of 

Eqs. ( A l l )  and (A19), one  finds 

If the  surface  displacement  occurs  under  conditions of local  mechanical 

equilibrium,  the  sum  of  the  pressure term  and  the surface  term  must 

vanish, so that 
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After  rearrangement of terms,  one  finds 

The  expression  for p in Eq. (A20) can be substituted  into Eq. (9a)  to  arrive 

at  the  dynamical  boundary  condition  at  the  free  surface  in Eq. (9b). 

APPENDIX B 

Demonstration that L=l terms  in  surface  displacement imply 

displacement of the center of mass of an  almost  spherical drop 

In  this  appendix  it  is  demonstrated  that if at  least  one = 1 term 

appears  in  the  surface  displacement  given by Eq. ( S a ) ,  i.e.  by 

then  the  center of mass of a  drop  that is spherical or nearly  spherical  is 

displaced  from the  origin of coordinates  for the angles 6 and cp. 

The  surface of the drop  is  at 
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r(0,cp;r) = ir(0,cp;r) 

where 

r(e, 9;t) = '0 + q(e, 9; t )  . 

The  center of mass of the drop  is  located at  position R given by 

R = - A ,  - 1 -  
M 

where  the  mass M of the drop  is  given by 

The  term  linear in  Tl integrates to zero.  Thru  first  order  terms in we 

have  

The  vector A is  given by 
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To evaluate A first  write 
- 

- A  r  =rr, 

i =?sinecoscp + jkinesinq +?cos8 

In the last  step  we have used Eqs. (57a)  and  (57b). 

Now rewrite Eq. (B6)  with  the  aid of (B7a)-(B7c).  Then  integrate  over 

r  and retain  terms  only thru first  order  in q. The  result  is 

4 The  term  involving % vanishes  upon  integration.  The  term 

involving q can be integrated  with  the  aid of Eqs. (Bl),  (61), and (62a)- 

(62c).  After  integrating  and  summing  over  Kronecker  deltas,  one  finds 

8 0  



Next  evaluate R using Eqs. (B4), (B6), and (B9). One  finds  that the center 

of mass  vector of  an almost  spherical  drop  is given by 

This  demonstrates that if at  least  one of the ! = 1 coefficients  in Eq. (B 1)  is 

different  from  zero, then the  center of mass  is  displaced  from  the  original 

origin  of  coordinates. 

APPENDIX C 

Scalar product of two  vector  spherical harmonics 

Vector  spherical  harmonics  can be constructed' by coupling  scalar 

spherical  harmonics  to uni t  vectors  in  3-dimensional  space  using 

quantum  mechanical  rules  for  combining  direct  products  of  angular 

momentum  eigenfunctions,  as  follows: 

where 

8 1  



With  the  aid of these  equations  one  can  evaluate  the  scalar  product of two 

vector  spherical  harmonics  as  indicated  next: 

Using Eqs. (82) and  (C3b),  one  can  obtain  the  results  that  we  seek, 

which  are Eq. (103)  and  a  formula  for the coefficients a that  occur 4 ,Ml 

there.  One  finds 

where 

aL,,M,(J,e,M;J',e',M') = ~( - l )""C( l , l , J ;M-m,m)C( l ' , l , J ' ;M' -m,m)  
-1SmSl 

x bL, ,M,(e' ,M"m;l , - (M-m))  

and bL& can  be  evaluated  using Eq. (84). 
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APPENDIX D 

Solution of harmonic  oscillator  equation with harmonic  driving 

term 

This  appendix  is  concerned  with  solving  the  differential  equation  in  Eq. 

(1 16), viz., 

subject  to  the  conditions 

w(t )=O for t 1 0  

Q(t)=O for t 1 O .  

The  solution  can  be  found  with  the  aid of Laplace  transforms,  as 

described  next.  Let \ 3 ( S )  be  the  Laplace  transform of v(t), where 

W 

q ( s )  = L {w(t)}  = je-s'W(t) dt . 
0 

The  Laplace  transform of Eq. (Dl) is 

From a table of transforms,  one  obtains 
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00 

l e -s ‘q( f )d t  = s2@(s) - s ~ ( 0 )  - Q(0) 
0 

Using Eqs. (Dl)-(D7),  one  finds 

Now consider  the  case  where 0 # (0’)2. Partial  fraction?  can  be  used  to 

convert Eq. (8a)  to the  form 

2 

The  inverse  transform of Eq. (D8b)  can be readily  constructed  with 

the  aid of a  table.  One  finds 

which can be expressed  as 
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Equation (Dl0)  agrees  with  Eq.  (1  17a), and  this  accomplishes  one of our 

goals. 

Turn  next to the  case  where = (0’)2 # 0. In  this  case  Eq.  (D8a) 

can be written  as 

Using  partial  fractions,  one  can  write  Eq.  (D11)  as 

Using  a  table  of  inverse  transforms,  one  obtains 

y( t )=-(-  1 e -io’t + eio’t) +- t eio’r 
4(0’)2 2i0’ 

For each of the cases 0 = 0’ and  and 0 = “o’, Eq.  (D13)  can be 

expressed  as 
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Equation  (D14)  agrees with Eq. ( 1 17b),  and so the  second  goal of this 

appendix  has  been  reached. 
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